Status of Air Quality in Central California and Needs for Further Study

Saffet Tanrikulu, Ph.D.
Research and Modeling Manager
Bay Area Air Quality Management District

4th AQAST Meeting Sacramento, CA November 29-30, 2012

Status of Air Quality in Central California

- One of the most polluted areas in the US
- Need to reduce emissions by 60% to achieve regulatory attainment
- Cost-effective emission reductions have been made
- Additional emission reductions are costly or require new technologies
- Our goal is to improve the accuracy of air quality models and forecast to better help planners

Nonattainment Areas for Ozone and PM2.5 in the US

Balanced Pollution Control Strategies

- Assess accurately of air quality benefits for new emission controls
- Develop incentive programs when exceedances are forecast
 - Free transit days
 - Telecommuting
 - Bike to work

Improved air quality model performance and forecast is critical for these strategies to succeed

Current Research at BAAQMD

- Ozone modeling
- PM2.5 modeling
- Toxic substance modeling
- Wood smoke modeling
- Ultrafine PM modeling
- Health benefit analysis of PM2.5 reduction
- Health benefit analysis of ultrafine PM reduction
- Statistical analyses to identify conducive days for adverse air quality

Ozone Simulation Using WRF-CMAQ

O3 PX_yjia vs OBS 13-20 PDT 07-31-2000 (Camx ICBC 5x5+time)

PM2.5 Simulation Using MM5-CMAQ

Heath Benefit Analysis Using BenMAP

Reduced number of asthma-related emergency room visits per 10,000 people under 18 years as PM2.5 is reduced from 2010 levels to the background level (5 µg/m³).

Ultrafine PM Simulation Using WRF-Amsterdam2 (12 sectors)

24-hour NUMUF

Proposed AQAST Investigator Projects

- Analysis of weather patterns impacting Central California ozone using satellite cloud cover data
- 2. Improve meteorological models using satellite data
- 3. Improve ozone and PM2.5 forecasts of the National Air Quality Forecast System over Central California
- Using satellite data to help manage PM2.5 in the San Francisco Bay Area

Analysis of Weather Patterns Impacting Central California Ozone using Satellite Cloud Cover Data PI: Richard McNider

- Providing a conceptual description linking upwind marine conditions over the Pacific Ocean to ozone formation in Central California
 - Improving ozone forecasting
- Evaluating meteorological and air quality models against the conceptually described marine conditions
 - How well do models estimate cloud cover

Cloud View on a Non-exceedance Day

At Orinda BART Station Looking Toward West

Cloud View on an Exceedance Day

At Orinda BART Station Looking Toward West

Improve Meteorological Models using Satellite Data PI: Richard McNider

- Adopt UAH's dynamic cloud adjustment and surface temperature assimilation methods for Central California applications
- Improve performance of regulatory air quality models by improving meteorological model performance
 - Significant improvements are expected because currently limited data are available over the Pacific Ocean

Effect of Land Surface Temperature Assimilation

Adapted from slides provided by Dr. Biazar

Effect of Dynamic Cloud Adjustment

(# of cloudy/clear grids in agreement) / (Total # of grids)

Improve Ozone and PM2.5 Forecasts of the National Air Quality Forecast System over Central California PI: Puis Lee

- Perform comprehensive model evaluation on local scale
- Provide feedback to NOAA for model improvements
- Promote the use of modeled forecast by local agencies

National Air Quality Forecast System

Using Satellite Data to Help Manage PM2.5 in the San Francisco Bay Area

PI: Yang Liu

- Monitor PM2.5 at subregions
- Identify heavily polluted areas
- Assess trend in PM2.5 concentrations
- Evaluate air quality modeling (CMAQ) results at subregional level

MODIS AOT vs. Observed PM2.5 over Northern Alabama for 2002

Adapted from slides provided by Prof. Jun Wang of University of Nebraska - Lincoln